Чертежи дифференциальный волновой вариатор

Изобретение относится к машиностроению. Передающий узел с качающейся шайбой содержит две обоймы 42 и 43, одна из которых 43 является качающейся шайбой. На обращенных друг к другу поверхностях тел вращения выполнены замкнутые кольцевые дорожки качения 44 и 45, взаимодействующие друг с другом посредством шариков 46 (тел качения), находящихся в постоянном контакте с дорожками качения 44 и 45 на обеих деталях. Угол наклона качающейся шайбы выбран так, чтобы дорожки в месте контакта с телами качения имели друг к другу наклон, меньший или равный углу самозаклинивания тел качения. Приведены варианты. Технический результат - устранение проскальзывания шариков в передающих узлах с качающейся шайбой, а также автоматическое регулирование нажатия на шарик во фрикционно-планетарных шариковых передачах. 4 н. и 43 з.п. ф-лы, 47 ил.

Область техники. Изобретение относится к области общего машиностроения, а именно к средствам для передачи вращения с преобразованием скорости, основанным на механизме с качающейся (прецессирующей) шайбой, и может быть использовано в приводах машин и механизмов самого широкого назначения.

К ним относится волновая зубчатая торцевая передача по заявке на патент РФ №94023896, МПК F 16 H 1/00. Передающий узел ее содержит качающуюся шайбу с торцевым зубчатым венцом, который находится в зацеплении с неподвижным торцевым зубчатым колесом. Прецессию шайбы вызывает генератор волн в виде эксцентрика с нажимным роликом. Качающаяся шайба связана с ведомым валом с помощью пространственного (или универсального) шарнира.

Все вышеописанные преобразователи скорости обладают общими недостатками, которые определяются используемым в них зубчатым зацеплением. Прежде всего, это большое трение и высокие тепловые потери, особенно при повышенных скоростях вращения. Кроме того, в зацеплении одновременно находится всего несколько зубьев, что ограничивает величину передаваемых этими механизмами моментов. Часть из этих недостатков устраняют преобразователи скорости с нутационными или прецессионными системами передачи момента с кулачковым зацеплением звеньев через тела качения (US №4715249; US №4563915; SU №1427115). Дифференциальный преобразователь скорости с качающейся шайбой по патенту US №4563915 имеет передающий узел из трех звеньев. Качающаяся шайба с двумя периодическими по азимуту кулачковыми элементами в виде гребней и впадин, расположенных на ее противоположных торцах, размещена между двух других звеньев в виде тел вращения. Кулачковые поверхности качающейся шайбы через цепочки шариков взаимодействуют с аналогичными кулачковыми элементами на обращенных к качающейся шайбе поверхностях тел вращения. Шарики удерживаются на фиксированном угловом расстоянии друг от друга тонкостенным сепаратором с отверстиями, введенным между взаимодействующими кулачковыми элементами. Гребни и впадины направлены вдоль оси и сконструированы так, чтобы элементы качения двигались по синусоидальной кривой на поверхности воображаемой сферы с центром, совпадающим с центром качающейся шайбы (и центром прецессии). Однако в этом устройстве расположенные на фиксированном расстоянии шарики будут постоянно сцепляться, и расцепляться с кулачковыми поверхностями, так как направленны вдоль оси гребни, и впадины на торцевых поверхностях находятся на разных расстояниях от центра воображаемой сферы.

Шайба качается относительно центра прецессии, являющегося центром симметрии системы, а цепочки шариков находятся в нутирующем движении, т.к. их плоскости смещены от центра прецессии. Шарики совершают колебательное движение как в осевом, так и в радиальном направлении, то есть при работе механизма происходит изменение угла смещения зацепляющихся деталей, что для высокоскоростных механизмов приводит к вибрации и вызываемым ею проблемам: шуму и износу. Кроме того, дорожки качения по эпи- и гипотрохоидальным кривым сложны в изготовлении. Понимая это, авторы предложили изготавливать все детали передаточного механизма из пластмассы, на которой дорожки качения сложной формы можно изготавливать штамповкой. Очевидно, что такие передачи не пригодны для силовых механизмов, а могут быть использованы только для приборов, часов и т.п. изделий.

Известен преобразователь скорости (US №1748907), передающий узел которого состоит из двух тел вращения: сферической головки, охватываемой качающейся шайбой. На внутренней сферической поверхности качающейся шайбы вдоль экваториальной линии выполнены лунки. Сферическая головка выполнена с замкнутой периодически изогнутой вдоль оси дорожкой качения на ее наружной боковой поверхности в экваториальной области сферы. В лунках расположены шарики, находящиеся в постоянном зацеплении с изогнутой дорожкой качения. В этом передающем узле центр прецессии цепочки шариков совпадает с центром прецессии качающейся шайбы, поэтому цепочка шариков будет участвовать только в прецессирующем движении, и требования к форме выполнения изогнутой дорожки качения значительно уменьшены. Основным недостатком преобразователя являются значительные потери на трение при проскальзывании шариков относительно лунок на качающейся шайбе.

Кроме того, прототип, как и каждый из вышеописанных преобразователей скорости с качающейся шайбой, имеет неподвижный корпус, с которым в каждой конкретной конструкции связана вполне конкретная деталь, а передающий узел имеет внутренний объем, ограниченный корпусом. Преобразователь с собственным корпусом, как правило, не встраивается в приводные механизмы, а размещается и компонуется снаружи, что увеличивает габариты устройства в целом. Таким образом, задачей изобретения является разработка универсального, простого в изготовлении, минимального по удельным весогабаритным характеристикам и удобного для встраивания в самые разнообразные машины и механизмы передающего узла и преобразователя скорости.

Техническим результатом настоящего изобретения является устранение проскальзывания шариков в передающих узлах с качающейся шайбой. При этом для фрикционно-планетарных шариковых передач решается задача автоматического регулирования величины нажатия на шарик без применения специальных механизмов.

Более просто понять сущность изобретения на примере передающего узла с качающейся шайбой во фрикционно-планетарных шариковых преобразователях скорости, поэтому начнем описание с этого варианта реализации изобретения.

В соответствии с изобретением передающий узел содержит два тела вращения, одно из которых выполнено с возможностью двух независимых движений: качаться относительно другого и вращаться вокруг собственной оси, наклонной к оси другого тела вращения и является качающейся шайбой. На обращенных друг к другу поверхностях тел вращения выполнены замкнутые кольцевые дорожки качения, взаимодействующие друг с другом посредством тел качения, находящихся в постоянном контакте с дорожками обоих тел вращения. Угол наклона качающейся шайбы выбран так, чтобы дорожки в месте контакта с телами качения имели друг к другу наклон, меньший или равный углу самозаклинивания тел качения. На практике этот угол для обычных конструктивных материалов можно принять в диапазоне 0,1-10 градусов. При выполнении этого условия тела качения, например шарики, будут зажаты между поверхностями качающейся шайбы и второго тела вращения без проскальзывания и при вращении одного из них будут вовлекаться в орбитальное движение относительно другого. В своем орбитальном движении шарики как кулачки воздействуют на шайбу, вызывая ее качание. Таким образом, передающий узел с качающейся шайбой будет реализовать принцип фрикционно-планетарной шариковой передачи, в которой планетарное движение шарика преобразуется в качающееся движение шайбы или наоборот. Наклон дорожек качения друг к другу будет обеспечивать автоматическую регулировку нажатия на шарик, т.к. при увеличении нагрузки или износе шарика и дорожек качения шарик сместится по азимуту в область меньшего расстояния между дорожками качения.

Передающий узел с качающейся шайбой по изобретению можно выполнить в двух конструктивных модификациях: дисковой и коаксиальной. В первой модификации тела вращения выполнены в виде дисков, один из которых качается относительно другого. Кольцевые замкнутые дорожки выполнены на обращенных друг к другу плоских поверхностях дисков и находятся в контакте с одним телом качения, расположенным между дорожками качения. Для выполнения условия наклона дорожек качения друг к другу под углом, меньшим угла самозаклинивания тел качения, угол наклона качающейся шайбы к оси передающего узла должен лежать в пределах 0,2-15 градусов. Тело качения в этом узле само устанавливается в том месте окружности дорожек качения, где расстояние между ними соответствует размеру тела качения.

В коаксиальной модификации передающего узла тела вращения выполнены в виде охватывающих друг друга обоймы и качающейся шайбы, с боковыми обращенными друг к другу поверхностями в виде сферического пояса с центром сферы в центре прецессии качающейся шайбы. В общем случае каждая из дорожек качения на качающейся шайбе и обойме выполнена в виде системы параллельных друг другу замкнутых кольцевых канавок, лежащих в плоскостях, перпендикулярных оси вращения соответствующей детали. Телами качения служат шарики, расположенные в местах пересечения канавок качающейся шайбы с канавками обоймы.

Для получения уравновешенной относительно оси обоймы системы шариков на обойме выполнены две кольцевые канавки, расположенные по разные стороны от большого круга сферы на расстоянии от него, равном половине размаха качающейся шайбы. Кольцевые канавки обоймы зацепляются с канавкой на качающейся шайбе двумя диаметрально расположенными шариками. Такая же уравновешенная система шариков получится, если на обойме выполнить одну канавку по линии большого круга сферы, и в двух диаметрально противоположных точках пересечения этой канавки с канавкой качающейся шайбы разместить два шарика.

Возможно сочетание одной канавки в экваториальной плоскости обоймы с двумя канавками на качающейся шайбе, разнесенными от экваториальной линии шайбы на расстояние, равное половине размаха качающейся шайбы.

Не следует забывать, что все вышеописанные шариковые фрикционно-планетарные узлы работают только при выполнении условия, накладываемого на угол наклона дорожек друг к другу. Невыполнение этого условия приведет к проскальзыванию шариков, т.е. к нарушению их фрикционной связи с дорожками качения, и нарушению передачи момента.

Углы α и β зависят от числа периодов и амплитуды дорожек качения. Амплитуды, в свою очередь, связаны с углом наклона качающейся шайбы. В любом случае, варьируя этими величинами, можно добиться выполнения условий (1) и (2).

Периодические дорожки качения на обеих деталях могут быть замкнутыми волнообразно изогнутыми. Дорожку качения на одной из деталей можно выполнить незамкнутой, в виде системы разнесенных по окружности канавок, вытянутых по меридианам сферы.

Дифференциальный преобразователь скорости на основе описанных передающих узлов содержит три вала. Качающаяся шайба передающего узла связана с одним из валов механизмом для независимого преобразования ее качающегося движения во вращение вала и наоборот, со вторым из валов механизмом передачи ее вращения относительно наклонной оси независимо от ее качающегося движения. С третьим валом непосредственно связано второе тело вращения передающего узла.

Для передающих узлов коаксиального исполнения целесообразно все валы выполнить соосными и полыми, образуя коаксиальную конструкцию из обойм в виде подшипникового узла.

Механизмом для независимого преобразования качающегося движения шайбы во вращательное движение первого вала, и наоборот, может служить косой кривошипный вал, на который качающаяся шайба посажена через подшипник. Механизмом преобразования качающегося движения во вращательное может служить и любой из фрикционно-планетарных шариковых передающих узлов коаксиального исполнения, реализованный на той же качающейся шайбе со стороны, противоположной основному передающему узлу. Тогда первым валом преобразователя будет являться обойма фрикционно-планетарного узла.

Передающие узлы коаксиального исполнения позволяют без значительного увеличения габаритов создавать двухступенчатые преобразователи скорости. Ступени могут быть расположены последовательно вдоль одной оси или охватывая друг друга (коаксиальное исполнение двухступенчатого преобразователя). Двухступенчатый преобразователь коаксиального исполнения, в свою очередь, может быть выполнен в двух вариантах.

По второму варианту двухступенчатый преобразователь компонуется из двух охватывающих друг друга отдельных передающих узлов. Качающиеся шайбы обоих узлов обращены друг к другу. Механизм преобразования качающегося движения каждой из шайб во вращательное представляет собой полый вал, введенный между качающимися шайбами обеих ступеней и имеющий на боковых поверхностях, обращенных к качающимся шайбам, элементы, вызывающие прецессию шайб. Такими элементами могут служить косые кривошипы с одинаковым или противоположным наклоном, на которые через подшипники посажены качающиеся шайбы. При одинаковом наклоне косых кривошипов шайбы качаются синхронно, при противоположном - в противофазе. Элементы, вызывающие прецессию шайб, можно выполнить и по-другому. На обращенных друг к другу боковых поверхностях в каждой паре полый вал - качающаяся шайба, выполнены кольцевая канавка и кольцевой выступ, сопрягающиеся друг с другом посредством двух диаметрально противоположных шариков. Шарики расположены между стенками канавки и выступом с противоположных сторон от последнего. Шайбы обеих ступеней связаны друг с другом узлом передачи вращения, так что передающий узел второй ступени одновременно выполняет функцию механизма передачи вращательного движения качающейся шайбы к валу, непосредственно связанному с обоймой передающего узла второй ступени.

Узел передачи вращения между параллельными валами может быть выполнен по любой из известных схем. Хорошо подходит для этих целей механизм с параллельными кривошипами. Наиболее предпочтительным с точки зрения уменьшения потерь на трение является механизм с параллельными кривошипами с шариковым зацеплением, как, например, в патентах US №4829851 или US №4643047. Этот же узел может быть выполнен и в виде вала, с которым каждая из качающихся шайб связана крестовиной. Для последнего преобразователя разработан оригинальный механизм для преобразования качающегося движения шайб во вращательное движение и наоборот. Он представляет собой обойму, расположенную по оси между ступенями преобразователя и снабженную наружным кольцевым выступом. Обойма выполнена с двумя косыми параллельными кривошипами, на которых с помощью подшипников посажены качающиеся шайбы. Кольцевой выступ выступает за пределы внешних обойм обоих передающих узлов преобразователя и его наружный венец выполнен как элемент червячной, конической зубчатой или фрикционной передачи. Такой механизм передает качающееся движение шайб к валу, ось которого перпендикулярна к общей оси передающих узлов. То есть преобразователь скорости предназначен для передачи вращения между скрещивающимися валами.

Следует отметить, что преобразователи скорости, выполненные по изобретению, эффективны только при небольших углах γ наклона качающейся шайбы. В противном случае, для передачи вращения между деталями, наклоненными друг к другу под большими углами, потребуется механизм, который значительно снизит эффект от отсутствия проскальзывания шариков в самом передающем узле. В то же время, для некоторых вариантов передающего узла угол γ для выполнения соотношений (1) и (2) может оказаться достаточно большим. Обойти это противоречие позволяет передающий узел с качающейся шайбой, в котором обе обоймы являются качающимися шайбами. В этом случае в соотношениях (1) и (2) под углом γ следует понимать угол наклона шайб друг к другу. В то же время каждая из шайб имеет наклон к оси передающего узла в два раза меньший. Соответственно уменьшается и угол в механизме передачи вращения.

Прецессию качающихся шайб можно возбуждать в противофазе. Преобразователь скорости в этом случае будет работать аналогично преобразователю с одной качающейся шайбой, только угол наклона между шайбами, определяющий угловые характеристики дорожек качения, будет равен сумме углов прецессии каждой из шайб. Такая модификация позволяет уменьшить угол прецессии каждой качающейся шайбы при сохранении прежнего угла наклона шайб друг к другу. Это упрощает требования к механизмам преобразования качающегося движения шайб во вращательного движение вала и улучшает условия их работы. В то же время, уменьшение угла прецессии, т.е. угла наклона каждой шайбы к оси преобразователя, упрощает требования к узлам передачи вращения между наклонными валами и позволяет им передавать более высокий момент при прочих равных условиях.

Такого же результата можно добиться, если на обращенных к качающимся шайбам поверхностях связанных друг с другом полых валов выполнить косые кривошипы с противоположным наклоном, взаимодействующие с качающимися шайбами через подшипники.

Краткое описание фигур чертежей.

Фиг.8-19 иллюстрируют различные конструктивные варианты шарикового фрикционно-планетарного передающего узла в коаксиальном исполнении, причем на фиг.8, 10, 12, 14, 16, 18 дан общий вид вариантов передающего узла, а на фиг.9, 11, 13, 15, 17 и 19 представлены схемы взаимодействия их дорожек качения с шариками.

На фиг.32, 33, 34, 35 в осевом сечении показаны дифференциальные преобразователи скорости с коаксиальным передающим узлом, отличающиеся друг от друга механизмами преобразования качающегося движения шайбы во вращение вала и узлами передачи вращения качающейся шайбы независимо от ее качающегося движения (узлами передачи вращения между наклонными валами).

Двухступенчатые преобразователи на фиг.38 и 39 состоят из двух охватывающих друг друга передающих узлов и отличаются друг от друга механизмом преобразования качающегося движения во вращение вала.

На фиг.44 схематически представлен предающий узел с двумя качающимися шайбами, а на фиг.45, 46, 47 - принципиальные схемы вариантов преобразователей на основе этого передающего узла.

Варианты осуществления изобретения.

Как и в обычной шариковой фрикционно-планетарной передаче, в предлагаемом узле можно увеличить диапазон передаточных отношений, изменяя эффективные радиусы качения R1 и R2 тела качения 5 по дорожкам 3 и 4 (см. фиг.3, 4 и 5). Для этого профили поперечного сечения дорожек 3 и 4 выполняются такими, чтобы радиусы качения шарика R1 и R2 по дорожкам 3 и 4 были не одинаковы. Передаточное отношение i12 от диска 1 к диску 2 составляет i12=R1/R2. Фиг.5 иллюстрирует случай, когда разница возникает при выполнении тела качения в виде ступенчатого ролика, контактирующего с дорожками качения 3 и 4 ступенями 6 и 7 с разным диаметром. Фиг.6 показывает, как можно сделать передающий узел с автоматической регулировкой величины передаваемого момента. Внешняя кольцевая часть любого из дисков (в данном случае диска 1) с дорожкой качения на ней, выполняется так, что боковые стенки 8 дорожки качения упруго подвижны относительно друг друга. Другими словами, дорожка качения в сечении может изменять радиус кривизны. На фиг.6 подвижность боковых стенок 8 дорожки обеспечивается двумя кольцевыми пережимами 9. При увеличении нагрузки на выходном валу шарик 5 перемещается по окружности в более узкую часть клина между дорожками качения, отжимая при этом стенки 8 дорожки качения 3 друг от друга. Точка контакта шарика с дорожкой 3 перемещается из точки В к точке С, увеличивая эффективный радиус качения R1 шарика 5 по дорожке 3. Это увеличение вызовет увеличение передаточного отношения и передаваемого момента.

Передающий фрикционно-планетарный узел коаксиальной модификации содержит обойму 20 и качающуюся шайбу 21, которые охватывают друг друга. На фиг.8, 10 и 12 изображены передающие узлы, в которых качающаяся шайба 21 охватывает обойму 20 снаружи. Следует отметить, что вполне работоспособна обращенная компоновка узлов, когда качающаяся шайба 21 размещена внутри обоймы 20. Сопрягающиеся боковые поверхности 22 и 23 обоймы 20 и шайбы 21 выполнены в виде сферического пояса с центром сферы (точка С) в центре симметрии обеих деталей. Качающаяся шайба 21 установлена с возможностью прецессии относительно точки С. На сопрягающихся боковых поверхностях 22 и 23 выполнены дорожки качения 24 и 25. Дорожка 25 на качающейся шайбе 21 представляет собой кольцевую канавку, выполненную по экваториальной линии сферической поверхности качающейся шайбы. Дорожка 24 - это кольцевая канавка, сдвинутая от экваториальной линии сферической поверхности 22 на расстояние, равное половине размаха качающегося движения шайбы 21. Обе канавки в поперечном сечении имеют форму полукруга, и в месте их пересечения расположен шарик 26, находящийся в постоянном контакте с обеими кольцевыми канавками. Цифрами 27 и 28 обозначено местоположение средних линий канавок 24 и 25 в боковой развертке.

На фиг.12 канавка 32 на обойме 20 расположена по ее экватору и зацепляется с канавкой 25 на качающейся шайбе двумя диаметрально противоположными шариками 33, расположенными в местах пересечения дорожек 32 и 25. На фиг.13 это точки пересечения средних линий 28 и 34 канавок 25 и 32.

На фиг.16 представлен вариант узла, в котором на качающейся шайбе выполнены две кольцевые канавки 35 и 36, расположенные по разные стороны от экваториальной линии шайбы и на расстоянии от нее, равном половине размаха качающейся шайбы. На обойме канавка 32 выполнена по линии большого круга сферической поверхности и зацепляется с канавками 35 и 36 двумя шариками 26 и 30, расположенными в местах пересечения средних линий 37 и 38 дорожек 35 и 36 со средней линией 34 дорожки 32.

Обойма 20 может быть выполнена из отдельных колец 39, 40, 41, на каждом из которых выполнена одна дорожка качения (см. фиг.18 и 19). Кольца могут вращаться вокруг общей оси независимо друг от друга. У такого передающего узла увеличивается число входных и выходных элементов, что расширяет его функциональные возможности. Особенности работы преобразователей с такими передающими узлами будут рассмотрены ниже.

В заявке WO 008201043 в качестве условия чистого качения шарика принято выравнивание пути, проходимого шариком относительно дорожки 45 на качающейся шайбе 43 и относительно дорожки 44 на обойме 42. Однако это условие не является достаточным. При углах между дорожками качения в месте контакта с шариками больших, чем угол самозаклинивания шариков, (как это изображено на чертежах и схемах в заявке WO 008201043) шарик выскользнет из клина и будет удерживаться в месте пересечения дорожек только их противоположными стенками 49 и 50, т.е. шарик будет являться только кулачком. На фиг.21 область нахождения шарика в этом случае показана штриховкой. Очевидно, что в этом случае шарик будет обязательно проскальзывать относительно какой-либо из поверхностей (47, 48, 49 или 50), а наличие допустимой области, большей чем размеры шариков, вызовет их биения и повышенный износ.

Как было показано выше, для обычных конструкционных материалов угол самозаклинивания лежит в пределах 0,1-10°, поэтому для угла ϕ должно выполняться условие

Таким образом, в нашем случае из всего многообразия сочетаний чисел N1 и N2, удовлетворяющих условию (7), следует выбрать такие, при которых выполняется неравенство (6). Фиг.22 и 23 иллюстрируют возможность изменением N1 и N2 добиться уменьшения угла ϕ. Цифрами 51 и 52 обозначены средние линии дорожек качения 44 и 45 на обойме 42 и качающейся шайбе 43 соответственно. 53 - это линия, по которой перемещается точка на поверхности качающейся шайбы при ее прецессии. Цифрой 54 показана траектория перемещения шариков 46. Амплитуда дорожек качения и угол наклона качающейся шайбы 43 на обеих фигурах одинаковы. В первом случае при N1=3, N2=13 и n=4 углы между дорожками качения, по крайней мере, в двух местах расположения шариков 46 превышают углы самозаклинивания. На фиг.23 средние линии дорожек качения 51 и 52 во всех местах расположения шариков 46 пересекаются под углами, меньшими, чем угол самозаклинивания. Числа периодов дорожек качения и число шариков составляют соответственно 3, 9 и 4.

Дорожка качения на одной из обойм может быть незамкнутой. На фиг.28 изображен передающий узел, у которого периодическая дорожка качения на обойме 42 выполнена в виде системы разнесенных по окружности отрезков канавок 55, расположенных вдоль меридианов сферической поверхности. На фиг.29 так же, как и на предыдущих схемах, цифрами 51 и 52 обозначены средние линии соответствующих дорожек качения. Очевидно, что такой передающий узел будет работать без проскальзывания шариков 46 при очень крутом фронте изгиба дорожки качения 45 и малых углах наклона качающейся шайбы 43, так как соответствующее условие в этом случае трансформируется в выражение ϕ=90°-α+γ<10. При этом не для всех шариков 46 будет выполняться условие чистого качения. Для шариков, находящихся в точках Е и F, условие самозаклинивание невыполнимо ни при каких значениях α, β или γ. Таким образом, в отличие от утверждения в описании заявки WO 008201043, что узел с меридиональными канавками на охватывающей детали будет работать без проскальзывания, мы утверждаем, что отдельные шарики в этой конструкции будут проскальзывать в любом случае. Если незамкнутая дорожка качения выполнена на качающейся шайбе 43, а замкнутая дорожка на обойме 42, то соответствующее угловое условие: ϕ=90°-β-γ<10 расширяет возможности для выбора углов β и γ, однако рассуждения о проскальзывании шариков в точках Е и F остаются в силе и для этого случая.

Рассмотрим теперь преобразователи скорости с вышеописанными передающими узлами. Преобразователь на фиг.32 реализован на передающем узле с замкнутыми периодическими дорожками качения на обойме 42 и качающейся шайбе 43. Он содержит три соосных полых вала 62, 63 и 64. Вал 62 связан с качающейся шайбой 43 механизмом преобразования вращения вала 62 в качающееся движение шайбы 43. Он представляет собой кольцевой выступ 65 на наружной боковой поверхности вала 62, сопрягающийся с кольцевой канавкой 66 на качающейся шайбе 43. Между противоположными стенками канавки 66 диаметрально противоположно друг другу и с разных сторон от кольцевого выступа 65 расположены два шарика 67. При вращении вала 62 шарики 67 катятся каждый по своей дорожке, образованной кольцевым выступом 65 и противоположными стенками канавки 66, вызывая качающееся движение шайбы 43. Механизм работает и в обратном направлении, т.е. качание шайбы вызовет вращение вала 62. Следует отметить, что в отличие от торцового кулачка в заявке WO 8201043, который передает усилие только в один полупериод качания шайбы, описанный выше механизм работает в оба полупериода. Вал 63 связан с качающейся шайбой 43 механизмом передачи ее вращения независимо от качающегося движения. В данной конструкции этот механизм представляет собой коническую зубчатую передачу 68. Третий вал преобразователя является непосредственно обоймой передающего узла с дорожкой качения 44 на его боковой поверхности. Полый вал 64 посажен на вал 62 с помощью подшипника 69. Вал 63 центрирован между валами 62 и 64 подшипниками 70 и 71. Цифрой 72 обозначен тонкостенный сепаратор, который необходим в отдельных передающих узлах для удержания шариков на одинаковом угловом расстоянии друг от друга в тех местах, где касательные к дорожкам качения в месте их пересечения параллельны (в точках В и D на фиг.23, 25 и 27). Сепаратор повторяет форму сопрягающихся поверхностей, т.е. также представляет собой сферический пояс. Гнезда сепаратора 72 образованы сквозными отверстиями. Здесь следует отметить, что сепаратор является необходимым элементом только для отдельных вариантов изготовления передающего узла. В частности, сепаратор не нужен для передающих узлов с высоким передаточным отношением и с высокой точностью изготовления дорожек качения. Преобразователь представляет собой дифференциальный механизм с двумя входами и одним выходом. В режиме редуктора входом является вал 62, один оборот которого вызывает одно полное качание шайбы 43. Если при этом один из валов 63 или 64 закрепить неподвижно, т.е. соединить с корпусом приводного механизма, то другой вал будет выходным. Если же один из валов 63 или 64 вращать со скоростью, отличающейся от скорости входного вала, то выходная скорость будет зависеть от соотношения скоростей на входах. В режиме мультипликатора входным должен быть любой из валов 63 или 64.

В конструкции преобразователя на фиг.33 вал 63 является корпусной деталью и образован двумя фланцами 73 и 74, связанными друг с другом и корпусом. Качающаяся шайба 43 связана с фланцами 73 и 74 двумя торцевыми зубчатыми передачами 75 и 76. Использование двух зубчатых передач в качестве передающего вращение механизма повышает количество зубьев, находящихся во взаимодействии и увеличивает передаваемый момент. Валы 62 и 64 установлены во фланцах 73 и 74 с помощью подшипников 77, 78, 79, 80. В качестве механизма преобразования качающегося движения шайбы 43 во вращение вала 62 и наоборот использован коаксиальный фрикционно-планетарный передающий узел, аналогичный узлу, изображенному на фиг.10. В нем две кольцевых канавки 24 и 29 на валу 62 зацепляются посредством двух шариков 26 и 30 с канавкой 25 на качающейся шайбе 43. Вместо этого узла может быть использован любой из описанных выше коаксиальных фрикционно-планетарных узлов.

В двухступенчатых коаксиальных преобразователях скорости на фиг.36 и 37 передающие узлы обеих ступеней реализованы на одной качающейся шайбе 43. Один из передающих узлов образован периодическими дорожками качения 45 и 44 на боковых поверхностях качающейся шайбы 43 и полого вала 64, являющегося обоймой передающего узла, и цепочкой шариков 46. Узел преобразования вращения вала 62 в качающееся движение шайбы 43 представляет собой косой кривошип 81, на который через радиально-упорный четырехточечный подшипник 88 буртиком 89 посажена качающаяся шайба 43. Для надежной посадки шайбы с противоположного торца преобразователя введен аналогичный вал 90 с косым кривошипом 91, на который через такой же подшипник 92 буртиком 93 посажен противоположный торец шайбы 43. Передающий узел второй ступени образован периодическими дорожками 94, 95 и цепочкой шариков 96. Дорожка 95 выполнена на боковой поверхности шайбы 43, противоположной поверхности с дорожкой 45 первого передающего узла. Дорожка 94 выполнена на боковой поверхности полого вала 97, обращенной к качающейся шайбе 43. Цифрами 72 и 98 обозначены сепараторы передающих узлов обоих ступеней. Валы 62, 64, 90 и 97 преобразователя собраны в единый узел посредством подшипников 99, 100, 101 и 102, расположенных по торцам преобразователя. Валы 62 и 90 вращаются как один вал и вызывают качающееся движение шайбы 43.

Работает двухступенчатый преобразователь следующим образом. При вращении от внешнего привода одного из валов, например вала 62 (вместе с валом 90), шайба 43 начинает качаться. Вращение входного вала не передается качающейся шайбе, т.к. она развязана с валом подшипниками 88, 92 или 105, 106. Это движение шайбы 43 за счет взаимодействия дорожек качения 44 и 45 с шариками 46 вызовет поворот качающейся шайбы 43 относительно вала 64 на угол, определяемый соотношением периодов дорожек качения 44 и 45. При соблюдении условия самозаклинивания шариков 46 относительно дорожек 44 и 45 они будут катиться по дорожкам без проскальзывания. Передающий узел второй ступени, образованный периодическими дорожками качения 94 и 95 и шариками 96, будет работать аналогичным образом, только входным звеном для него будет качающаяся шайба 43, которая одновременно качается и вращается. Таким образом, для первой ступени преобразователя функцию узла, передающего вращение качающейся шайбы 43, будет выполнять передающий узел второй ступени. Выходным валом преобразователя в этом случае будет вал 97, скорость вращения которого относительно входного вала 62 будет определяться скоростью вращения вала 64 и соотношением чисел периодов дорожек качения передающих узлов первой и второй ступеней. Следует отметить, что входными или выходными валами могут быть любые из валов 62 (он же 90), 64 и 97. Преобразователь при этом будут работать как мультипликатор или редуктор (при неподвижном одном из валов), либо как дифференциальный преобразователь скорости в зависимости от соотношения скоростей на двух входных валах.

Преобразователь на фиг.39 отличается механизмами преобразования качающегося движения шайб 43 и 109 во вращение вала 62. Эти механизмы выполнены в виде фрикционно-планетарных передающих узлов с дорожками качения 115 на противоположных боковых поверхностях вала 62, с двумя параллельными экватору дорожками качения 116 и 117 на каждой из качающихся шайб, и двумя парами диаметрально противоположных шариков 118 и 119 в этих дорожках. Цифрами 120 и 121 обозначены подшипники, посредством которых валы 62, 64 и 112 преобразователя фиксируются друг относительно друга.

В двухступенчатом преобразователе с последовательньм расположением ступеней на фиг.40 передающий узел первой ступени образован качающейся шайбой 43 и валом-обоймой 64 с шариками 46 в дорожках качения 44, 45. Узел второй ступени образован качающейся шайбой 122, посаженной на второй косой кривошип 123 на валу 62 с помощью радиально-упорного четырехточечного подшипника 124. Шайбы 43 и 122 параллельны друг другу. Шайбу 122 охватывает полый вал 125, являющийся обоймой передающего узла второй ступени. На обращенных друг к другу поверхностях качающейся шайбы 122 и обоймы 125 выполнены периодические дорожки качения 126 и 127. В дорожках качения расположена цепочка шариков 128. Оси прецессии ОО1 и CC1 качающихся шайб 43 и 122 параллельны друг другу и эксцентрично смещены относительно друг друга. Поэтому механизм передачи вращения от одной шайбы к другой в данной конструкции представляет собой узел передачи вращения между параллельными валами в виде шарикового параллельного кривошипа. Он представляет собой лунки 129 и 130 на торцевых поверхностях качающихся шайб 43 и 122, которые зацепляются друг с другом посредством шариков 131. Оси лунок равномерно расположены по окружности каждой шайбы, а диаметры лунок больше диаметра шариков 131 на величину смещения друг относительно друга осей качающихся шайб 43 и 122 при их синхронной прецессии относительно точек А и В. При прецессии шайб шарики 131, обкатывая лунки 129 и 130, позволяют шайбам 43 и 122 смещаться, но не позволяют им поворачиваться друг относительно друга. Таким образом, вращение одной из шайб вызывает поворот другой, при этом шарики 131 позволяют поверхностям шайб смещаться друг относительно друга, сохраняя возможность прецессии каждой из них относительно своего центра. Полые валы 64 и 125 могут вращаться независимо друг от друга благодаря наличию подшипников 132 между ними. Все три вала 62, 64 и 125 преобразователя собраны в единый узел с помощью подшипников 133 и 134. Цифрой 135 обозначен сепаратор передающего узла второй ступени.

Вариант двухступенчатого преобразователя на фиг.42 имеет шайбы 43 и 122, качающиеся в противофазе. Для этого на валу 62 выполнены косые кривошипы 141 и 142 с противоположным наклоном. Связь между обоймами осуществляется с помощью конических зубчатых колес 143 и 144. Все остальные обозначения на фиг.42 соответствуют обозначениям фиг.40 и 41.

Двухступенчатый преобразователь с последовательным расположением ступеней работает следующим образом. Допустим, что неподвижно закреплен вал-обойма 64 передающего узла первой ступени. При вращении вала 62 с угловой скоростью ω1 качающаяся шайба 43 совершает прецессию с той же скоростью и, воздействуя на шарики 46, заставляет их обкатывать без скольжения неподвижную дорожку качения 44 на обойме 64 со скоростью ω2, зависящей от числа периодов этой дорожки качения. Обкатное движение шариков 46, в свою очередь, вызовет поворот шайбы 43 относительно цепочки шариков, который зависит от числа периодов дорожки качения 45 качающейся шайбы 43. Относительно неподвижной обоймы 64 (относительно корпуса) шайба 43 будет вращаться с угловой скоростью ω3, являющейся функцией числа периодов дорожек качения 44 на обойме 64 и 45 на шайбе 43. Шариками 131 параллельного кривошипа, зубьями колес 143 и 144 или валом 149 с крестовинами 150 и 151 это вращение передается шайбе 122, которая одновременно с вращением прецессирует с угловой скоростью ω1. Шарики 128 второго передающего узла, взаимодействуя с дорожкой качения 126 на шайбе 122 и дорожкой 127 на обойме 125, вызовут поворот последней относительно шайбы 122, на угол, определяемый соотношением периодов дорожек качения 126 и 127. Общий поворот ведомого вала-обоймы 125 будет зависеть от ω1, ω2, ω3 и, в конечном счете, будет определяться числами периодов всех четырех дорожек качения на качающихся шайбах и обоймах передающих узлов обеих ступеней. Если вал 64 будет вращаться, т.е. будет вторым входным валом, то выходная скорость будет зависеть, кроме всего прочего, и от соотношения входных скоростей валов 62 и 64. Центром прецессии цепочки шариков 46 является точка А, а центром прецессии цепочки шариков 128 - точка В, которые совпадают с центрами симметрии соответствующих шайб. То есть, прецессия каждой цепочки шариков осуществляется относительно точки, лежащей в плоскости этой цепочки, что значительно упрощает требования к профилю периодической дорожки качения.

На фиг.45 и 46 приведены схемы преобразователей скорости, в которых шайбы 152 и 153 качаются навстречу друг другу, т.е. прецессируют в противофазе. Такую прецессию обеспечивает механизм, представляющий собой два полых вала 157 и 158, соединенных между собой фланцем 159. Вал 157 расположен внутри передающего узла, а вал 158 - снаружи. На боковых обращенных друг к другу поверхностях вала 157 и шайбы 152 выполнены замкнутые кольцевая канавка 159 и кольцевой выступ 160. Аналогичные канавка 161 и выступ 162 выполнены на обращенных друг к другу поверхностях другой пары вал 158 - качающаяся шайба 153. Между боковой стенкой канавки 159 и кольцевым выступом 160 с одной стороны шайбы 152 и между противоположной стенкой канавки 159 и противоположной стороной выступа 160 на диаметрально противоположной стороне шайбы введены два шарика 163. Точно так же между канавкой 161 и выступом 162 введены два шарика 164. Шарики 163 и 164 расположены друг относительно друга так, что обеспечивают противоположный наклон шайб 152 и 153. Шайбы 152 и 153 связаны с полыми валами 165 и 166 узлами передачи вращения между несоосными валами. На фиг.45 это система рычагов или гибких тяг 167 и 168, а на фиг.46 и 47 эти узлы выполнены в виде конической зубчатой передачи 169 и 170.

Работа преобразователей скорости на фиг.45 и 46 практически не отличается от работы преобразователя, изображенного на фиг.33 или 34. Один из валов 165 или 166 является выходным звеном, а другой закрепляется неподвижно. Отбор мощности всегда производится через узел передачи вращения между несоосными валами, и этот узел рассчитан на меньший угол наклона валов, чем в преобразователе с одной качающейся шайбой. Кроме того, в два раза уменьшен угол прецессии каждой из качающихся шайб при прочих равных условиях, т.е. механизм преобразования качающегося движения шайбы во вращательное движение вала и наоборот работает при меньших углах.

Таким образом, в описанных в заявке передающих узлах с качающейся шайбой отсутствует трение скольжения зацепляющихся элементов, что повышает кпд, уменьшает шум и износ дорожек и тел качения. Разнообразные схемы преобразователей скорости с такими передающими узлами построены по принципу подшипника, т.е. состоят из нескольких соосных обойм, каждая из которых может служить входным (или входными), выходным (или выходными) валами или корпусом, изменяя при этом режим работы и функции преобразователя. Каждый из описанных выше элементов может применяться порознь или вместе, формируя конструкции разнообразного применения, но все они не выходят за пределы сущности настоящего изобретения.

2. Передающий узел по п.1, отличающийся тем, что угол наклона дорожек качения друг к другу составляет от 0,1 до 10°.

4. Передающий узел п.1, отличающийся тем, что тела вращения выполнены в виде дисков с кольцевыми замкнутыми дорожками качения на обращенных друг к другу плоских поверхностях, контактирующих друг с другом посредством одного тела качения.

6. Передающий узел по п.4, отличающийся тем, что тело качения выполнено в виде шарика и боковые стенки дорожки качения выполнены упругоподвижными относительно друг друга.

8. Передающий узел по п.7, отличающийся тем, что дорожка качения на качающейся шайбе выполнена в виде одной замкнутой кольцевой канавки, расположенной по экваториальной линии шайбы.

10. Передающий узел по п.8, отличающийся тем, что на обойме выполнены две кольцевые канавки, расположенные по разные стороны от большого круга сферы на расстоянии, равном половине размаха качающейся шайбы, зацепляющиеся с канавкой на качающейся шайбе двумя диаметрально расположенными шариками.

12. Передающий узел по п.8, отличающийся тем, что на обойме выполнены три кольцевые канавки, одна - по линии большого круга сферы и две - по разные стороны от нее на расстоянии, равном половине размаха качающейся шайбы, зацепляющиеся с канавкой на качающейся шайбе четырьмя попарно диаметральными шариками.

14. Передающий узел по п.7, отличающийся тем, что в системе кольцевых канавок на обойме, по меньшей мере, одна из канавок выполнена на отдельном независимо вращающемся элементе обоймы.

16. Передающий узел по п.15, отличающийся тем, что угол α наклона фронта периодической дорожки качения к экватору на качающейся шайбе и соответствующий угол β на обойме связаны с углом γ наклона качающейся шайбы соотношениями α-β-γ≤10° при α≥β; β-α+γ≤10° при α<β.

18. Передающий узел по п.15, отличающийся тем, что дорожка качения на одном из тел вращения выполнена незамкнутой в виде системы разнесенных по окружности канавок, вытянутых по меридианам сферы.

20. Передающий узел по п.15, отличающийся тем, что замкнутая дорожка качения выполнена на обойме, последняя разрезана по средней линии изогнутой дорожки качения, образуя два независимо вращающихся элемента обоймы, дорожка качения на каждом из которых представляет собой систему полуволн, выполненных с разным числом периодов.

22. Дифференциальный преобразователь скорости по п.21, отличающийся тем, что передающий узел выполнен по п.4, механизм для преобразования качающегося движения во вращательное, и наоборот, выполнен в виде торцового кулачка, взаимодействующего с качающимся диском через подшипник, а второй вал является корпусом передачи и связан с качающейся шайбой устройством предотвращения ее вращения при сохранении качающегося движения.

24. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что передающий узел выполнен по п.14 или 20 и введены дополнительные валы, непосредственно связанные с отдельными элементами обоймы.

26. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что механизм преобразования качающегося движения шайбы во вращательное, и наоборот, выполнен в виде передающего узла по любому из пп.7-13, реализованного на той же качающейся шайбе со стороны, противоположной основному передающему узлу, и обойма которого непосредственно связана с первым валом.

28. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что механизм независимой передачи вращения качающейся шайбы выполнен в виде системы гибких тяг или шарниров.

30. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что механизм независимой передачи вращения качающейся шайбы выполнен в виде универсального шарнира.

32. Дифференциальный преобразователь скорости по п.31, отличающийся тем, что механизм преобразования качающегося движения шайбы во вращательное, и наоборот, выполнен в виде двух полых валов с одинаковыми косыми кривошипами, введенных на подшипниках между внутренней и наружной обоймами преобразователя с противоположных торцов, а качающаяся шайба посажена на кривошипные валы с помощью подшипников.

34. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что коаксиально с первым дополнительно введен передающий узел второй ступени, выполненный по любому из пп.7-19 и расположенный относительно первого так, что качающиеся шайбы обоих узлов обращены друг к другу, механизм преобразования качающегося движения каждой из шайб во вращательное выполнен в виде полого вала, введенного между качающимися шайбами обеих ступеней и имеющего на внутренней и внешней боковых поверхностях элементы, вызывающие прецессию шайб, и шайбы обеих ступеней связаны друг с другом во вращательном движении, так что передающий узел второй ступени одновременно выполняет функцию механизма передачи вращательного движения качающейся шайбы к валу, непосредственно связанному с обоймой передающего узла второй ступени.

36. Дифференциальный преобразователь скорости по п.34, отличающийся тем, что элементы, вызывающие прецессию шайб, выполнены на боковых обращенных друг к другу поверхностях полого вала и каждой качающейся шайбы в виде кольцевой канавки и кольцевого выступа, сопрягающихся друг с другом посредством двух диаметрально противоположных шариков, расположенных между стенами канавки и выступом с противоположных сторон от последнего.

38. Дифференциальный преобразователь скорости по п.37, отличающийся тем, что узел передачи вращения между параллельными валами выполнен в виде механизма с параллельными кривошипами.

40. Дифференциальный преобразователь скорости по п.37, отличающийся тем, что узел передачи вращения между параллельными валами выполнен в виде вала и двух крестовин, соединяющих каждую из качающихся шайб с этим валом.

42. Дифференциальный преобразователь скорости по п.23, отличающийся тем, что последовательно с первым дополнительно введен передающий узел второй ступени, выполненный по любому из пп.7-19, качающиеся шайбы обеих ступеней связаны механизмом передачи вращения между наклонными валами, а механизм преобразования качающегося движения во вращательное, и наоборот, обеспечивает противофазную прецессию шайб.

44. Дифференциальный преобразователь скорости, содержащий, по меньшей мере, три соосных полых вала, образующих коаксиальную конструкцию из обойм в виде подшипникового узла, а также передающий узел, выполненный по п.43, в котором качающиеся шайбы связаны с двумя валами узлами передачи вращения между наклонными валами, а с другими валами преобразователя - механизмами для независимого преобразования качающегося движения во вращательное, и наоборот.

46. Дифференциальный преобразователь скорости по п.44, отличающийся тем, что механизм преобразования качающегося движения шайб во вращение выполнен в виде двух коаксиальных и связанных друг с другом полых валов, один из которых расположен снаружи внешней качающейся шайбы, а второй - внутри внутренней качающейся шайбы, на обращенных к качающимся шайбам поверхностях полых валов выполнены косые кривошипы с противоположным наклоном, взаимодействующие с качающимися шайбами через подшипники.